Параметрические уравнения, неравенства и системы, часть с
Содержание:
- Тригонометрия
- Несовместные события
- Подготовка к первой части экзамена по информатике
- Принцип 2. «Создайте четкий алгоритм»
- Показательные уравнения
- Теория к заданию 4 из ЕГЭ по математике (профильной)
- Противоположные события
- Независимые события
- Несовместные события
- Совместные события
- Подготовка к ЕГЭ по информатике
- Прямоугольный треугольник
- Метод группировки
- SkySmart
- Тема: «Задачи из повседневной жизни»
Тригонометрия
Пусть имеется прямоугольный треугольник:
Тогда, определение синуса:
Определение косинуса:
Определение тангенса:
Определение котангенса:
Основное тригонометрическое тождество:
Простейшие следствия из основного тригонометрического тождества:
Синус двойного угла:
Косинус двойного угла:
Тангенс двойного угла:
Котангенс двойного угла:
Тригонометрические формулы сложения
Синус суммы:
Синус разности:
Косинус суммы:
Косинус разности:
Тангенс суммы:
Тангенс разности:
Котангенс суммы:
Котангенс разности:
Тригонометрические формулы преобразования суммы в произведение
Сумма синусов:
Разность синусов:
Сумма косинусов:
Разность косинусов:
Сумма тангенсов:
Разность тангенсов:
Сумма котангенсов:
Разность котангенсов:
Произведение синусов:
Произведение синуса и косинуса:
Произведение косинусов:
Формулы понижения степени
Формула понижения степени для синуса:
Формула понижения степени для косинуса:
Формула понижения степени для тангенса:
Формула понижения степени для котангенса:
Формула половинного угла для тангенса:
Формула половинного угла для котангенса:
Формулы приведения задаются в виде таблицы:
Несовместные события
Два события $А$ и $В$ называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию
$А$, так и событию $В$. (События, которые не могут произойти одновременно)
Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих
событий:
$Р(А+В)=Р(А)+Р(В)$
На экзамене по алгебре школьнику достается один вопрос их всех экзаменационных. Вероятность
того, что это вопрос на тему «Квадратные уравнения», равна $0,3$. Вероятность того, что это вопрос на тему
«Иррациональные уравнения», равна $0,18$. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Решение:
Данные события называются несовместные, так как школьнику достанется вопрос ЛИБО по теме «Квадратные уравнения»,
ЛИБО по теме «Иррациональные уравнения». Одновременно темы не могут попасться. Вероятность суммы двух
несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:
$Р(А+В)=Р(А)+Р(В)$
$Р = 0,3+0,18=0,48$
Ответ: $0,48$
Подготовка к первой части экзамена по информатике
Внимательно читайте условие задачи. Большинство ошибок при выполнении заданий связано с неверным пониманием условия. Познакомьтесь с разными вариантами формулировки заданий. Помните о том, что незначительное изменение формулировки всегда приводят к ухудшению результатов экзамена.
Выучите наизусть таблицу степеней числа 2.
Помните о том, что Кбайты в задачах означают кибибайты, а не килобайты. 1 кибибайт = 1024 байта
Это поможет избежать ошибок при вычислениях.
Уделите особое внимание задачам № 9, 10, 11, 12, 15, 18, 20, 23. Именно эти задачи, согласно анализу результатов прошлых лет, особенно сложны
Сделайте на них упор при подготовке к ЕГЭ по информатике.
Принцип 2. «Создайте четкий алгоритм»
Я не раз готовила к ЕГЭ выпускников, не знающих таблицу умножения, не умеющих складывать дроби и не знающих ничего толкового о действиях с отрицательными числами, но ни разу в жизни мне не попадались дети, не умеющие решать квадратные уравнения. И дело тут не в том, что это самый простой раздел математики, а в четкой последовательности действий и большом количестве практики. Когда у ученика есть инструкция по работе с тем или иным заданием, шаги которой он понимает, то успех неизбежен!
Для ребят с техническим складом ума соблюдение определенного алгоритма столь же естественно как дыхание. А более творческим натурам они помогут собраться с мыслями, не потерять нить решения и контролировать свои действия на каждом шаге.
Чем ниже уровень ваших учеников, тем проще и конкретнее должна быть описана последовательность действий. Например, один и тот же алгоритм нахождения наибольшего значения функции для учащихся с разным уровнем подготовки можно записать как в две строчки, так и на страницу текста. И в обоих случаях это будет оправдано, ведь первым не нужны излишние подробности, они и та хорошо ориентируются в вопросе, а вторым, наоборот, без пояснений и «разжёвывания» не обойтись.
Показательные уравнения
Показательными называют такие уравнения, в которых неизвестное содержится в показателе степени.
$a^x=b$
При решении показательных уравнений используются свойства степеней, вспомним некоторые из них:
1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.
$a^n·a^m=a^{n+m}$
2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются
$a^n:a^m=a^{n-m}$
3. При возведении степени в степень основание остается прежним, а показатели перемножаются
$(a^n)^m=a^{n∙m}$
4. При возведении в степень произведения в эту степень возводится каждый множитель
$(a·b)^n=a^n·b^n$
5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель
$({a}/{b})^n={a^n}/{b^n}$
6. При возведении любого основания в нулевой показатель степени результат равен единице
$a^0=1$
7. Основание в любом отрицательном показателе степени можно представить в виде основания в таком же положительном показателе степени, изменив положение основания относительно черты дроби
$a^{-n}={1}/{a^n}$
${a^{-n}}/{b^{-k}}={b^k}/{a^n}$
8. Радикал (корень) можно представить в виде степени с дробным показателем
$√^n{a^k}=a^{{k}/{n}}$
Виды показательных уравнений:
1. Простые показательные уравнения:
а) Вида $a^{f(x)}=a^{g(x)}$, где $а >0, a≠1, x$ — неизвестное. Для решения таких уравнений воспользуемся свойством степеней: степени с одинаковым основанием ($а >0, a≠1$) равны только тогда, когда равны их показатели.
$f(x)=g(x)$
b) Уравнение вида $a^{f(x)}=b, b>0$
Для решения таких уравнений надо обе части прологарифмировать по основанию $a$, получается
$log_{a}a^{f(x)}=log_{a}b$
$f(x)=log_{a}b$
2. Метод уравнивания оснований.
3. Метод разложения на множители и замены переменной.
- Для данного метода во всем уравнении по свойству степеней надо преобразовать степени к одному виду $a^{f(x)}$.
- Сделать замену переменной $a^{f(x)}=t, t > 0$.
- Получаем рациональное уравнение, которое необходимо решить путем разложения на множители выражения.
- Делаем обратные замену с учетом того, что $t > 0$. Получаем простейшее показательное уравнение $a^{f(x)}=t$, решаем его и результат записываем в ответ.
Пример:
Решите уравнение $2^{3x}-7·2^{2x-1}+7·2^{x-1}-1=0$
Решение:
По свойству степеней преобразуем выражение так, чтобы получилась степень 2^x.
$(2^x)^3-{7·(2^x)^2}/{2}+{7·2^x}/{2-1}=0$
Сделаем замену переменной $2^x=t; t>0$
Получаем кубическое уравнение вида
$t^3-{7·t^2}/{2}+{7·t}/{2}-1=0$
Умножим все уравнение на $2$, чтобы избавиться от знаменателей
$2t^3-7·t^2+7·t-2=0$
Разложим левую часть уравнения методом группировки
$(2t^3-2)-(7·t^2-7·t)=0$
Вынесем из первой скобки общий множитель $2$, из второй $7t$
$2(t^3-1)-7t(t-1)=0$
Дополнительно в первой скобке видим формулу разность кубов
$2(t-1)(t^2+t+1)-7t(t-1)=0$
Далее скобку $(t-1)$ как общий множитель вынесем вперед
$(t-1)(2t^2+2t+2-7t)=0$
Произведение равно нулю, когда хотя бы один из множителей равен нулю
1) $(t-1)=0;$ 2) $2t^2+2t+2-7t=0$
Решим первое уравнение
$t_1=1$
Решим второе уравнение через дискриминант
$2t^2-5t+2=0$
$D=25-4·2·2=9=3^2$
$t_2={5-3}/{4}={1}/{2}$
$t_3={5+3}/{4}=2$
Получили три корня, далее делаем обратную замену и получаем три простых показательных уравнения
$2^x=1; 2^x={1}/{2}; 2^x=2$
$2^x=2^0; 2^x=2^{-1}; 2^x=2^1$
$х_1=0; х_2=-1; х_3=1$
Ответ: $-1; 0; 1$
4. Метод преобразования в квадратное уравнение
- Имеем уравнение вида $А·a^{2f(x)}+В·a^{f(x)}+С=0$, где $А, В$ и $С$ — коэффициенты.
- Делаем замену $a^{f(x)}=t, t > 0$.
- Получается квадратное уравнение вида $A·t^2+B·t+С=0$. Решаем полученное уравнение.
- Делаем обратную замену с учетом того, что $t > 0$. Получаем простейшее показательное уравнение $a^{f(x)}=t$, решаем его и результат записываем в ответ.
Способы разложения на множители:
Вынесение общего множителя за скобки.
Чтобы разложить многочлен на множители путем вынесения за скобки общего множителя надо:
- Определить общий множитель.
- Разделить на него данный многочлен.
- Записать произведение общего множителя и полученного частного (заключив это частное в скобки).
Пример:
Разложить на множители многочлен: $10a^{3}b-8a^{2}b^2+2a$.
Общий множитель у данного многочлена $2а$, так как на $2$ и на «а» делятся все члены. Далее найдем частное от деления исходного многочлена на «2а», получаем:
$10a^{3}b-8a^{2}b^2+2а=2a({10a^{3}b}/{2a}-{8a^{2}b^2}/{2a}+{2a}/{2a})=2a(5a^{2}b-4ab^2+1)$
Это и есть конечный результат разложения на множители.
Теория к заданию 4 из ЕГЭ по математике (профильной)
Вероятностью события $А$ называется отношение числа благоприятных для $А$ исходов к числу всех
равновозможных исходов
$P(A)={m}/{n}$, где $n$ – общее количество возможных исходов, а $m$ – количество исходов, благоприятствующих событию
$А$.
Вероятность события — это число из отрезка $$
В фирме такси в наличии $50$ легковых автомобилей. $35$ из них чёрные, остальные — жёлтые.
Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета.
Решение:
Найдем количество желтых автомобилей:
$50-35=15$
Всего имеется $50$ автомобилей, то есть на вызов приедет одна из пятидесяти. Желтых автомобилей $15$,
следовательно, вероятность приезда именно желтого автомобиля равна ${15}/{50}={3}/{10}=0,3$
Ответ:$0,3$
Противоположные события
Два события называются противоположными, если в данном испытании они несовместимы и одно из них обязательно
происходит. Вероятности противоположных событий в сумме дают 1.Событие, противоположное событию $А$, записывают
${(А)}{-}$.
$Р(А)+Р{(А)}{-}=1$
Независимые события
Два события $А$ и $В$ называются независимыми, если вероятность появления каждого из них не зависит от того,
появилось другое событие или нет. В противном случае события называются зависимыми.
Вероятность произведения двух независимых событий $A$ и $B$ равна произведению этих
вероятностей:
$Р(А·В)=Р(А)·Р(В)$
Иван Иванович купил два различных лотерейных билета. Вероятность того, что выиграет первый
лотерейный билет, равна $0,15$. Вероятность того, что выиграет второй лотерейный билет, равна $0,12$. Иван Иванович
участвует в обоих розыгрышах. Считая, что розыгрыши проводятся независимо друг от друга, найдите вероятность того,
что Иван Иванович выиграет в обоих розыгрышах.
Решения:
Вероятность $Р(А)$ — выиграет первый билет.
Вероятность $Р(В)$ — выиграет второй билет.
События $А$ и $В$ – это независимые события. То есть, чтобы найти вероятность того, что они произойдут оба
события, нужно найти произведение вероятностей
$Р(А·В)=Р(А)·Р(В)$
$Р=0,15·0,12=0,018$
Ответ: $0,018$
Несовместные события
Два события $А$ и $В$ называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию
$А$, так и событию $В$. (События, которые не могут произойти одновременно)
Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих
событий:
$Р(А+В)=Р(А)+Р(В)$
На экзамене по алгебре школьнику достается один вопрос их всех экзаменационных. Вероятность
того, что это вопрос на тему «Квадратные уравнения», равна $0,3$. Вероятность того, что это вопрос на тему
«Иррациональные уравнения», равна $0,18$. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Решение:
Данные события называются несовместные, так как школьнику достанется вопрос ЛИБО по теме «Квадратные уравнения»,
ЛИБО по теме «Иррациональные уравнения». Одновременно темы не могут попасться. Вероятность суммы двух
несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:
$Р(А+В)=Р(А)+Р(В)$
$Р = 0,3+0,18=0,48$
Ответ: $0,48$
Совместные события
Два события называются совместными, если появление одного из них не исключает появление другого в одном и том же
испытании. В противном случае события называются несовместными.
Вероятность суммы двух совместных событий $A$ и $B$ равна сумме вероятностей этих событий минус
вероятность их произведения:
$Р(А+В)=Р(А)+Р(В)-Р(А·В)$
В холле кинотеатра два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится
кофе, равна $0,6$. Вероятность того, что кофе закончится в обоих автоматах, равна $0,32$. Найдите вероятность того,
что к концу дня кофе закончится хотя бы в одном из автоматов.
Решение:
Обозначим события, пусть:
$А$ = кофе закончится в первом автомате,
$В$ = кофе закончится во втором автомате.
Тогда,
$A·B =$ кофе закончится в обоих автоматах,
$A + B =$ кофе закончится хотя бы в одном автомате.
По условию, $P(A) = P(B) = 0,6; P(A·B) = 0,32$.
События $A$ и $B$ совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий,
уменьшенной на вероятность их произведения:
$P(A + B) = P(A) + P(B) − P(A·B) = 0,6 + 0,6 − 0,32 = 0,88$
Ответ: $0,88$
Подготовка к ЕГЭ по информатике
ЕГЭ по информатике состоит из двух частей. В первой части 23 задачи с кратким ответом, во второй — четыре задачи с развёрнутым ответом. В первой части экзамена 12 заданий базового уровня, 10 заданий повышенного уровня и одно задание высокого уровня. Во второй части — одно задание повышенного уровня и три высокого.
Решение задач из первой части позволяет набрать 23 первичных балла — по одному баллу за выполненное задание. Решение задач второй части добавляет 12 первичных баллов (3, 2, 3 и 4 балла за каждую задачу соответственно). Таким образом, максимум первичных баллов, которые можно получить за решение всех заданий, — 35.
Первичные баллы переводятся в тестовые, которые и являются результатом ЕГЭ.
Из них 90 минут отводится на решение задач из первой части. В среднем на каждую задачу из первой части уходит от 3 до 5 минут. На решение задачи №23 требуется 10 минут.
Остаётся 145 минут на решение заданий второй части экзамена, при этом для решения последней задачи №27 понадобится не менее 55 минут. Эти расчёты выполнены специалистами Федерального института педагогических измерений и основаны на результатах экзаменов прошлых лет, поэтому к ним следует отнестись серьёзно и использовать в качестве ориентира при подготовке к экзамену по информатике.
Тщательно изучите варианты ЕГЭ предыдущих лет. Экзамен по информатике — один из самых стабильных, для подготовки можно смело использовать варианты ЕГЭ за последние 3-4 года.
Прямоугольный треугольник
В прямоугольном треугольнике катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.
Некоторые свойства прямоугольного треугольника:
- Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.
- Если в прямоугольном треугольнике один из острых углов равен $45$ градусов, то этот треугольник равнобедренный.
- Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)
- Катет прямоугольного треугольника, лежащий напротив угла в $60$ градусов, равен малому катету этого треугольника, умноженному на $√3$.
- Медиана прямоугольного треугольника, проведенная к его гипотенузе, равна ее половине и радиусу описанной окружности $(R)$. (Рис.14)
- Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями которых являются катеты данного треугольника. (Рис.14)
Один острый угол прямоугольного треугольника на $44°$ больше другого острого угла. Найдите больший острый угол.
Решение:
В прямоугольном треугольнике $АВС$ $∠А$ и $∠В$ – острые.
Пусть $∠ А – х$, тогда $∠ В — (х+44)$.
Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.
На основании этого правила, составим и решим уравнение:
$х+х+44=90$
$2х+44=90$
$2х=90-44$
$2х=46$
$х=23$
Угол $В$ больший в этом треугольнике, через $«х»$ он записывался как, $х+44$, следовательно, $∠В=23+44=67°$.
Ответ: $67$
Теорема Пифагора
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
$АС^2+ВС^2=АВ^2$
Соотношение между сторонами и углами в прямоугольном треугольнике:
В прямоугольном треугольнике $АВС$, с прямым углом $С$
Для острого угла $В$: $АС$ — противолежащий катет; $ВС$ — прилежащий катет.
Для острого угла $А$: $ВС$ — противолежащий катет; $АС$ — прилежащий катет.
- Синусом $(sin)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
- Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
- Тангенсом $(tg)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
- Котангенсом $(ctg)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
- Основное тригонометрическое тождество: $sin^2x+cos^2x=1$
- В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
- Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
- Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.
Значения тригонометрических функций некоторых углов:
$α$ | $30$ | $45$ | $60$ |
$sinα$ | ${1}/{2}$ | ${√2}/{2}$ | ${√3}/{2}$ |
$cosα$ | ${√3}/{2}$ | ${√2}/{2}$ | ${1}/{2}$ |
$tgα$ | ${√3}/{3}$ | $1$ | $√3$ |
$ctgα$ | $√3$ | $1$ | ${√3}/{3}$ |
Метод группировки
Методом группировки удобно пользоваться, когда на множители необходимо разложить многочлен с четным количеством слагаемых. В данном способе необходимо собрать слагаемые по группам и вынести из каждой группы общий множитель за скобку. У нескольких групп после вынесения в скобках должны получиться одинаковые выражения, далее эту скобку как общий множитель выносим вперед и умножаем на скобку полученного частного.
Пример:
Разложить многочлен на множители $2a^3-a^2+4a-2$
Решение:
Для разложения данного многочлена применим метод группировки слагаемых, для этого сгруппируем первые два и последние два слагаемых, при этом важно правильно поставить знак перед второй группировкой, мы поставим знак + и поэтому в скобках запишем слагаемые со своими знаками. $2a^3-a^2+4a-2=(2a^3-a^2)+(4a-2)$
$2a^3-a^2+4a-2=(2a^3-a^2)+(4a-2)$
Далее из каждой группы вынесем общий множитель
$(2a^3-a^2)+(4a-2)=a^2(2a-1)+2(2a-1)$
После вынесения общих множителей получили пару одинаковых скобок. Теперь данную скобку выносим как общий множитель.
$a^2(2a-1)+2(2a-1)=(2a-1)(a^2+2)$
Произведение данных скобок — это конечный результат разложения на множители.
SkySmart
Сайт: https://skysmart.ru/Стоимость: от 990 р. за индивидуальный урок, первый пробный урок — бесплатно
Подготовка к ОГЭ и ЕГЭ по математикеИндивидуально онлайн с сильным преподавателем
Приведут к цели каждого ученика и помогут показать на экзамене свой максимум — и даже больше:
-
Определят уровень
Сколько баллов можно набрать уже сейчас и какого результата реально достичь -
Покажут, где теряются баллы
Какие задания будут на экзамене и где чаще всего делают ошибки -
Подготовят без паники
Разберете все трудные темы и научитесь справляться со стрессом
Курс разработан по методическим рекомендациям ФИПИ в 2020 году.
-
Вычисления
Как решать уравнения и неравенства с процентами, модулями, степенями и логарифмами.
Задания: 1, 9, 17, 19, 5, 10, 11, 13, 19 -
Анализ функций
Как строить графики функций, определять их производные и первообразные.
Задания: 2, 7, 12, 18 -
Геометрия
Как правильно читать и строить чертежи и помнить все определения и теоремы.
Задания: 3, 6, 8, 14, 16 -
Оформление
Как правильно перенести ответы из черновика в чистовик и как это влияет на оценку
Профессиональные преподаватели математики с сертификатами DELTA, TESOL, CELTA, ФИПИ. Каждый год сами сдают ОГЭ и ЕГЭ, чтобы быть в курсе всех изменений.
Тема: «Задачи из повседневной жизни»
За это задание вы можете получить 1 балл на ЕГЭ в 2022 году
Задача 1
Установка двух счётчиков воды (холодной и горячей) стоит $8200$ рублей. До установки счётчиков за воду платили $1200$ рублей ежемесячно. После установки счётчиков ежемесячная оплата во…
Задача 2
Мобильный телефон стоил $13500$ рублей. Через некоторое время цену на эту модель снизили до $10530$ рублей. На сколько процентов была снижена цена?
Задача 3
Рост человека — $5$ футов $3$ дюйма. Выразите его рост в сантиметрах, если $1$ фут равен $0{,}305$ м, а $1$ дюйм равен $2{,}54$ см. Результат округлите до целого числа сантиметров.
Задача 4
Диагональ экрана телевизора равна $42$ дюймам. Выразите диагональ экрана в сантиметрах. Считайте, что $1$ дюйм равен $2{,}54$ см. Результат округлите до целого числа.
Задача 5
На автозаправке клиент отдал кассиру $1100$ рублей и попросил залить бензин до полного бака. Цена бензина — $38$ руб. $50$ коп. за литр. Сдачи клиент получил $99$ рублей. Сколько литров бе…
Задача 6
В магазине покупатель купил $12$ банок консервов. Цена одной банки $119$ рублей. Сколько рублей сдачи должен получить покупатель с $1500$ рублей?
Задача 7
В квартире установлен прибор учёта расхода холодной воды (счётчик). Показания счётчика $1$ июня составляли $120$ куб. м воды, а $1$ июля — $136$ куб. м. Сколько нужно заплатить за холодную…
Задача 8
Показания счётчика электроэнергии $1$ января составляли $1567$ киловатт-часов, а $1$ февраля — $1703$ киловатт-часа. Сколько нужно заплатить за электроэнергию за январь, если $1$ киловатт-ча…
Задача 9
Налог на доходы составляет $13%$ от заработной платы. После удержания налога на доходы Татьяна Львовна получила $13485$ рублей. Сколько рублей составляет заработная плата Татьяны Львов…
Задача 10
На городском фестивале грамоты получили $182$ человека, что составляет $35%$ от числа участников фестиваля. Сколько всего было участников фестиваля?
Задача 11
Стоимость проездного билета на электричку на месяц составляет $720$ рублей, а стоимость билета на одну поездку — $20$ рублей. Сергей купил проездной и сделал за месяц $42$ поездки. На ск…
Задача 12
Стоимость проездного билета на электричку на месяц составляет $840$ рублей, а стоимость билета на одну поездку — $30$ рублей. Полина купила проездной и сделала за месяц $36$ поездок. На …
Задача 13
Стоимость полугодовой подписки на журнал «Мой дом» составляет $1000$ рублей, а стоимость одного номера журнала — $54$ рубля. За полгода Ира купила $21$ номер журнала. На сколько рублей м…
Задача 14
Стоимость полугодовой подписки на журнал «Строю сам» составляет $840$ рублей, а стоимость одного номера журнала — $43$ рубля. За полгода Михаил купил $24$ номера журнала. На сколько рубл…
Задача 15
Оптовая цена ёлки — $210$ рублей. Розничная цена на $15%$ выше оптовой. Какое наибольшее число таких ёлок можно купить по розничной цене на $5000$ рублей?
Задача 16
Магазин закупает коробки для хранения овощей по оптовой цене $75$ рублей за штуку и продаёт с наценкой $25%$. Какое наибольшее число таких коробок можно купить в этом магазине на $500$ р…
Задача 17
Смартфон стоил 3900 рублей. После снижения цены он стал стоить 3354 рублей. На сколько процентов была снижена цена на смартфон?
Задача 18
Смартфон стоил 4200 рублей. После снижения цены он стал стоить 3738 рублей. На сколько процентов была снижена цена на смартфон?
Задача 19
Бегун пробежал 150 м за 25 секунд. Найдите среднюю скорость бегуна на дистанции. Ответ дайте в километрах в час.
Задача 20
Бегун пробежал 320 м за 40 секунд. Найдите среднюю скорость бегуна на дистанции. Ответ дайте в километрах в час.
1
…